Mixed matrix (operator) inequalities

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix and Operator Inequalities

In this paper we prove certain inequalities involving matrices and operators on Hilbert spaces. In particular inequalities involving the trace and the determinant of the product of certain positive definite matrices.

متن کامل

From Matrix to Operator Inequalities

We generalize Löwner’s method for proving that matrix monotone functions are operator monotone. The relation x ≤ y on bounded operators is our model for a definition for C∗-relations of being residually finite dimensional. Our main result is a meta-theorem about theorems involving relations on bounded operators. If we can show there are residually finite dimensional relations involved, and veri...

متن کامل

Operator-valued extensions of matrix-norm inequalities

The bilinear inequality is derived from the linear one with the help of an operatorvalued version of the Cauchy-Schwarz inequality. All these results, at least in their finite form, are obtained by simple and elegant methods well within the scope of a basic course on Hilbert spaces. (They can alternatively be obtained by tensor product techniques, but in the author’s view, these methods are les...

متن کامل

Operator-splitting Methods for General Mixed Variational Inequalities

In this paper, we use the technique of updating the solution to suggest and analyze a class of new splitting methods for solving general variational inequalities. It is shown that these modified methods converge for pseudomonotone operators, which is a weaker condition than monotonicity. Our method includes the two-step forward-backward splitting and extragradient methods for solving various cl...

متن کامل

Some weighted operator geometric mean inequalities

In this paper, using the extended Holder- -McCarthy inequality, several inequalities involving the α-weighted geometric mean (0<α<1) of two positive operators are established. In particular, it is proved that if A,B,X,Y∈B(H) such that A and B are two positive invertible operators, then for all r ≥1, ‖X^* (A⋕_α B)Y‖^r≤‖〖(X〗^* AX)^r ‖^((1-α)/2) ‖〖(Y〗^* AY)^r ‖^((1-α)/2) ‖〖(X〗^* BX)^r ‖^(α/2) ‖〖(Y...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2002

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(01)00380-9